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The thermodynamic properties of a spin S=1 /2 tetrameric Heisenberg antiferromagnetic chain with alter-
nating interactions AF1-AF2-AF1-F �AF and F denote the antiferromagnetic and ferromagnetic couplings,
respectively� are studied by means of the transfer-matrix renormalization-group method and Jordan-Wigner
transformation. It is found that in the absence of magnetic field, the thermodynamic behaviors are closely
related to the gapped low-lying excitations, and a novel structure with three peaks in the temperature depen-
dence of specific heat is unveiled. In a magnetic field, a phase diagram in the temperature-field plane for the
couplings satisfying JAF1

=JAF2
=JF is obtained, in which various phases are identified. The temperature depen-

dence of thermodynamic quantities including the magnetization, susceptibility, and specific heat are studied to
characterize the corresponding phases. It is disclosed that the magnetization has a crossover behavior at low
temperature in the Luttinger liquid phase, which is shown falling into the same class as that in the S=1 Haldane
chain. In the plateau regime, the thermodynamic behaviors alter at a certain field, which results from the
crossing of two excitation spectra. By means of the fermion mapping, it is uncovered that the system has four
spectra from fermion and hole excitations that are responsible for the observed thermodynamic behaviors.
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I. INTRODUCTION

In recent years, low-dimensional quantum magnets have
received much attention in condensed-matter physics. In par-
ticular, one-dimensional quantum spin chains with compet-
ing interactions that show exotic physical properties have
been extensively studied in the past decades. Among others,
the dimerized spin-1

2 antiferromagnetic �AF�-ferromagnetic
�F� alternating chain has been widely studied both
theoretically1–3 and experimentally,4 where it was found that
the system has a gap from the singlet ground state to the
triplet excited states, and can be mapped onto the S=1
Haldane chain5–7 if the F couplings dominate. Moreover, a
series of trimerized compounds, including the S=1 /2
antiferromagnetic F-F-AF chain of 3CuCl2 ·2dx
�dx=1,4-dioxane� �Ref. 8� and the ferrimagnetic AF-AF-F
chains of �Mn�L2��N3�2�n �L=3-methylpyridine� with
S=5 /2,9 �M�4,4�bipy��N3�2�n �bipy=bipyridine� with
M =Co �S=3 /2� and Ni �S=1�,10 and �Mn�N3�2�bpee��n
�bpee=trans-1 ,2-bis�4-pyridyl�ethylene� with S=5 /2,11 have
been synthesized in experiments. In such trimerized spin
chains, the topological quantization of magnetization, i.e.,
the magnetization plateau, has been predicted
theoretically.12–16 The predictions were based on the theorem
proposed by Oshikawa, Yamanaka, and Affleck,17 which ex-
tends the Lieb-Schultz-Mattis theorem to give a necessary
condition for the appearance of magnetization plateau in the
spin chains with translational symmetry. However, the pla-
teau was not observed experimentally in the above-
mentioned compounds owing to the weak AF couplings. A
plateau at m=1 /4 �m is the magnetization per site� was later
observed in an S=1 /2 tetrameric F-F-AF-AF ferrimagnet
Cu�3-Clpy�2�N3�2 �Refs. 18–22� due to the strong AF
couplings.

Recently, a spin S=1 /2 tetrameric Heisenberg antiferro-
magnetic chain �HAFC� with AF1-AF2-AF1-F interactions
has been studied, whose ground state was found to be in a
gapped Haldane-type phase while, importantly, it cannot be
reduced to an integer spin chain.23 26 years ago, Haldane24

conjectured that an isotropic HAFC with an integer spin has
a finite gap from the singlet ground state to the triplet excited
states and the spin-spin correlation function decays exponen-
tially, while the HAFC with half-integer spin has a gapless
spectrum and a correlation function with a power-law decay.
Although there is no rigorous proof for a general case until
now, Haldane’s scenario has been confirmed experimentally
and numerically in many systems �e.g., Ref. 25�. Besides the
HAFCs with integer spin, Haldane gap has also been found
in S=1 /2 spin ladders26,27 and AF-F alternating Heisenberg
chains.5 This is because these spin-1

2 systems were found to
be reducible to an S=1 HAFC when the F couplings are
dominantly larger than the AF couplings. However, the
present S=1 /2 AF1-AF2-AF1-F tetrameric HAFC cannot be
reduced to an integer spin chain even if the F coupling domi-
nates and a gapped state with m=0 was observed.23 By using
a dual transformation, the Z2�Z2 hidden symmetry is dis-
closed to be fully broken and the string order is found non-
vanishing in the ground state further suggesting that this
spin-1

2 tetrameric HAFC system belongs to the Haldane-type
phase,28,29 which extends the substance of Haldane’s sce-
nario, namely, the Haldane gap can appear in certain spin
half-integer chains. Apart from the gapped state with m=0, a
magnetization plateau at m=1 /4 was also found in this
system.23 In the critical magnetic fields where the magneti-
zation curve is singular, quantum phase transitions �QPTs�
�Ref. 30� may happen and consequently, phase crossovers are
expected at finite temperature.

As this spin-1
2 AF1-AF2-AF1-F tetrameric HAFC exhibits

many interesting behaviors at zero temperature, a deeper in-
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vestigation is still quite necessary. In this paper, we shall go
on elaborating the thermodynamics of this system by means
of the transfer-matrix renormalization group �TMRG� as well
as the Jordan-Wigner �JW� transformation with emphasis on
the effects of the couplings and the external magnetic field
on thermodynamical properties of the system. The possible
magnetic phase diagram at finite temperature will be pre-
sented. The low-lying excitations that are closely related to
the observed thermodynamic behaviors will also be dis-
cussed.

The Hamiltonian of the S=1 /2 tetrameric HAFC with
alternating couplings AF1-AF2-AF1-F in a longitudinal mag-
netic field is given by

H = �
j=1

N

�JAF1
S4j−3 · S4j−2 + JAF2

S4j−2 · S4j−1 + JAF1
S4j−1 · S4j

− JFS4j · S4j+1� − h�
j=1

4N

Sj
z, �1�

where JAF1,2
��0� denote the AF couplings, JF��0� denotes

the F coupling, and h is the magnetic field. We take JAF1
as

the energy scale and g�B=1 for convenience. N is the total
number of the unit cells. The Boltzmann constant is taken as
kB=1.

The numerical algorithm TMRG method,31–34 which is a
powerful tool for studying the thermodynamics of one-
dimensional quantum systems will be primarily employed in
the following investigations. As the TMRG technique has
been discussed in many reviews, we shall not repeat the de-
tails here. In the following calculations, the width of the
imaginary time slice is taken as �=0.1 and the error caused
by the Trotter-Suzuki decomposition is less than 10−3. Dur-
ing the TMRG iterations, 80 states are retained and the tem-
perature is down to T=0.02JAF1

in general. In the Luttinger
liquid and gapless phases, the temperature is down lower
than 0.01JAF1

when calculating the magnetization and sus-
ceptibility. The truncation error is less than 10−4 in all calcu-
lations.

The other parts of the paper are organized as follows. In
Sec. II, we shall present the TMRG results of the thermody-
namic quantities in the absence of magnetic field. In Sec. III,
a magnetic phase diagram at finite temperature will be pro-
posed for the case with JAF1

=JAF2
=JF and the thermody-

namic properties will be discussed in the various phases. In
Sec. IV, we shall invoke the mean-field results from the JW
transformation to explain the behaviors observed in Secs. II
and III. Finally, a summary and discussion will be given.

II. ZERO-FIELD THERMODYNAMIC PROPERTIES

A. Specific heat

Let us first look at the temperature dependence of the
specific heat for the isolated tetramer systems with JAF2

=0 or
JF=0. For JAF2

=0, the specific heat decays exponentially as
T→0 and has a sharp peak at low temperature that shifts
slightly to lower temperatures with increasing JF, as shown
in Fig. 1�a�. For JF=0, the specific heat has a single peak

when JAF2
/JAF1

�1. If JAF2
exceeds JAF1

, with increasing
JAF2

the single peak splits into double peaks, one of which
moves to lower temperatures while the other moves to higher
temperatures, as shown in Fig. 1�b�. The distinct behaviors of
the specific heat for the two tetramer systems are owing to
their different energy spectra. When JAF2

=0, for each tet-
ramer there are four energy levels that decrease with increas-
ing JF, while the gaps among them vary slightly, yielding a
small shift of the peak. When JF=0, with increasing JAF2

the
gap between the ground state and the first excited states di-
minishes rapidly, accounting for the shift of the low-
temperature peak, while the shift of the high-temperature
peak is owing to the enlarged gaps between the energy lev-
els. These limiting cases offer useful information for better
understanding the features of the specific heat of the systems
with arbitrary couplings, which will be discussed below.

The effects of JF on the specific heat are first discussed.
In Fig. 2�a�, the specific heat of the system with
JAF2

/JAF1
=1.0 are presented for different JF. The specific

heat has a single peak and decays exponentially as T→0,
indicating a gapped excitation. With increasing JF, the single
peak declines and a shoulder appears to be gradually promi-

FIG. 1. �Color online� Temperature dependence of the specific
heat of the isolated tetramer systems with �a� JAF2

=0 and
�b� JF=0.

FIG. 2. �Color online� Temperature dependence of the specific
heat of the tetrameric chain for �a� JAF2

/JAF1
=1.0, �b�

JAF2
/JAF1

=5.0, �c� JF /JAF1
=1.0, and �d� JF /JAF1

=10.0 with
JAF2

/JAF1
=0.5, 0.7, 0.9, 1.0, 2.0, 5.0, 8.0, and 12.0 from top to

bottom. The inset of �d� shows the parameter regions where the
specific heat has different peak structures.
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nent at low temperatures. Thus, it is expected that the system
has at least two gapped excitations. With increasing JF, the
gap that is related to the lower excitation decreases slowly,23

yielding the emergence of the shoulder. Figure 2�b� shows
the specific heat of the system with JAF2

/JAF1
=5.0 for differ-

ent JF. As JAF2
is large, the specific heat has two peaks for

JF /JAF1
=0.1, like the tetramer system with JF=0. With in-

creasing JF, a novel peak emerges between the low- and
high-temperature peaks, which shifts to higher temperatures
with further increase in the F coupling until it is merged into
the high-temperature peak. It can be seen that the specific
heat behaves rather differently with JF for different JAF2

and
in certain couplings region the specific heat can exhibit a
novel three-peak structure.

Next, we study the effects of JAF2
on the specific heat. In

Fig. 2�c�, the specific heat of the system with JF /JAF1
=1.0

are plotted for various JAF2
. When JAF2

=JAF1
, the specific

heat has a single peak and decays exponentially as T→0.
When JAF2

exceeds JAF1
, the single peak splits into double

peaks, one of which shifts to lower temperature side while
another moves to the higher temperature side with increasing
JAF2

. These behaviors could be understood by means of the
corresponding tetramer system where the gaps between the
energy levels are decreasing rapidly with increasing JAF2

.23 It
is noticed that the novel peak emerges when JAF2

is large
enough, e.g., JAF2

/JAF1
=4.0 for JF /JAF1

=1.0. When JAF2
continues to increase, the novel peak is nearly
invariant. When JF is too large, as shown in Fig. 2�d� for
JF /JAF1

=10.0, the novel peak is absent. These results indi-
cate that the novel peak is yielded by increasing JF after the
double peaks have been induced by large JAF2

.
The inset of Fig. 2�d� shows the parameter regions where

the specific heat has different peak structures. The dashed
line separates the regions of the single peak and double
peaks while the solid line separates the regions of the double
and three peaks. The observations in Figs. 2�a�–2�c� are
manifested clearly in this depiction. It is shown that when
JAF2

�JAF1
, the single peak starts to split into double peaks.

When JAF2
/JAF1

exceeds about 3.5, the novel peak can ap-
pear with increasing JF, and it would merge into the high-
temperature peak with further increase in the coupling. As
the intermediate region is enlarged by increasing JAF2

, the
parameter region of JF for the emergence of the novel peak is
wider for larger JAF2

. It is interesting to point out that the
emergence of three peaks of the specific heat in the absence
of magnetic field is nontrivial, which is not the usual feature
in low-dimensional quantum magnets.

B. Susceptibility

The temperature dependence of the susceptibility is pre-
sented in Fig. 3 for different cases. It is shown that the sus-
ceptibility has a peak and decreases exponentially as T→0.
With increasing JF or JAF2

, the peak shifts to lower tempera-
tures with the height enhanced, which are consistent with the
diminution of the gap and the behaviors of the specific heat.
As the gap decreases slowly with JF but rapidly with JAF2

,23

the susceptibility changes slightly with JF but dramatically

with JAF2
, as demonstrated in Figs. 3�a� and 3�b�, respec-

tively. At high temperatures, the gap is suppressed by ther-
mal fluctuations and the susceptibility goes to coincidence
for different couplings. These behaviors imply the distinc-
tions of the low-lying excitations, which will be reexamined
in terms of the spinless fermions in Sec. IV.

III. THERMODYNAMICS IN MAGNETIC FIELDS

In this section, the thermodynamic properties of the sys-
tem with JAF1

=JAF2
=JF in the presence of a magnetic field

are studied by means of the TMRG method. A phase diagram
in the temperature-field plane is proposed and the magneti-
zation, susceptibility, and specific heat are investigated ac-
cordingly in the various phases.

A. Phase diagram

As shown in Fig. 4�a�, the zero-temperature magnetiza-
tion curve is singular at the critical fields hc1

, hc2
, hc3

, and
hs,

23 suggesting that QPTs �Ref. 30� may happen. These tran-
sitions are measured by the divergent peaks of �m /�h, which
separate the Haldane-type phase, Luttinger liquid �LL�
phase, plateau phase, gapless phase, and polarized state of
the system in a magnetic field. At finite temperature, the
magnetization plateaus are smeared out, and the peaks of
�m /�h become analytic, which, however, can still describe
the crossover behaviors of the various phases. Therefore, the
magnetization process at different temperatures will be stud-
ied to obtain the phase diagram in the temperature-field
plane.

Figure 4�a� shows that with increasing temperature, the
two peaks of �m /�h at hc1

�hc3
� and hc2

�hs� gradually merge
into a single peak at rather low temperature, indicating the
crossovers from the LL �gapless� regime to other regimes.
With further increasing temperature, the high-field peak that
separates the plateau and spin-polarized regimes disappears
at T�0.44JAF1

and the low-field peak that separates the
gapped spin liquid and plateau regimes disappears at
T�0.68JAF1

�the inset of Fig. 4�a��. The shifts of the peaks
in the temperature-field plane compose of the crossover
lines. Based on the observations, we propose a phase dia-
gram in the temperature-field plane as shown in Fig. 4�b�,
from which one may observe that the system has the gapped

FIG. 3. �Color online� Temperature dependence of the spin sus-
ceptibility of the tetrameric chain for �a� JAF2

/JAF1
=1.0 with differ-

ent JF and �b� JF /JAF1
=1.0 with different JAF2

.
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spin liquid, LL, magnetization plateau, gapless, spin polar-
ized, and classical phases.

B. Magnetization

The temperature dependence of the magnetization m�T� in
the various regimes are investigated. When h�hc1

, the low-
lying excitation is gapped. With decreasing temperature, the
magnetization m first increases with a power law, then goes
down, and finally decays exponentially to zero with the ef-
fective gap �eff=hc1

−h as T→0. As expected, with decreas-
ing the effective gap, the peak of m�T� moves to lower tem-
perature side with the amplitude enhanced, as shown in Fig.
5�a�.

In the LL regime when hc1
�h�hc2

, the gap is closed by
the field, and the system undergoes a commensurate-
incommensurate transition at h=hc1

in the ground state.35 At
finite temperatures, m�T� shows a minimum or maximum at
low temperatures, as shown in Fig. 5�b�. The minima are
close to the crossover boundary between the gapped spin
liquid and LL regimes while the maxima are close to that
between the magnetization plateau and LL regimes, indicat-
ing the nonsingular crossovers from the LL to the high-
temperature regimes. Maeda, Hotta, and Oshikawa36 pointed
out that this crossover is universal in general gapped one-
dimensional spin systems with axial symmetry, resulting
from the minus derivative of the density of states near the
critical field and the variation of the Fermi velocity vF. In
Sec. IV, this observation would be reproduced by the JW

transformation and interpreted more physically.
In Ref. 36, a linear dependence of the transition tempera-

ture �Tm� on the field Tm=x0�h−hc� �hc is the critical field
where the gap is closed� near the critical field hc was pro-
posed for the S=1 Haldane chain. The field dependence of
the crossover temperature for the present tetrameric HAFC is
shown in the lower inset of Fig. 5�b�. It can be seen that the
crossover temperature Tm varies like a sine function of the
field and behaves linearly near the critical fields hc1

and hc2
.

The coefficient x0�0.762 38 proposed in Ref. 36 for the
S=1 Haldane chain near hc fits well to our data near both hc1
and hc2

�see the solid lines in the inset�, indicating that this
tetrameric chain slightly above hc1

and below hc2
could also

be well described by the free fermion theory,37–39 and the
crossover in this LL phase is of the same class as that in the
Haldane chain. Although this tetrameric chain cannot be re-
duced to a typical Haldane chain with an integer spin, their
analogous dispersion relation of the low-lying excitations are
revealed by the same class of this crossover behavior of mag-
netization.

In the magnetization plateau, m approaches 0.25 as
T→0. As shown in Fig. 5�c�, when hc2

�h�hm�1.1JAF1
, m

increases slowly with cooling temperature to a certain value
and, then, rises rapidly to 0.25, where hm is the crossing field
of the magnetization curves at low temperatures in the pla-
teau states, as marked by the triangle in Fig. 4�a�. When
hm�h�hc3

, m increases to a maximum and then declines to
0.25. The different behaviors are also observed in the mag-
netization curves at various temperatures �Fig. 4�a��. In the
field hm, m changes slowly at low temperature, like the m�T�
curve with h /JAF1

=1.1 in Fig. 5�c�. These magnetic behav-
iors in the plateau state have also been noted in the spin-1

2
trimerized15 and F-F-AF-AF tetrameric chains.19 In Sec. IV,
it would be found that these common features in the plateau
states may result from the crossing of fermion and hole ex-
citations. The field hm is in the middle of the plateau and
corresponds to the midpoint of the gap between the crossing

FIG. 4. �Color online� �a� Magnetization curves at different tem-
peratures. The inset shows �m /�h as a function of h at different
temperatures. �b� Phase diagram in the temperature-field plane. The
solid lines and the dashed line are obtained by observing the peaks
of �m /�h and the points with �� /�T=0, respectively.

FIG. 5. �Color online� Magnetization as a function of tempera-
ture for �a� h�hc1

, �b� hc1
�h�hc2

, �c� hc2
�h�hc3

, and �d�
hc3

�h�hs. The insets show �b� the minima �maxima� and the field
dependence of the crossover temperature; �c� the behavior of �m /�T
for h /JAF1

=0.9, 1.0, 1.02, 1.04, 1.05, and 1.1 from bottom to top;
and �d� the minima and maxima in the gapless regime.
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fermion and hole spectra. When h�hm, the maximum of
m�T� with �m /�T=0 measures the change in the magnetic
properties. For h�hm, although m keeps declining, such a
change also exists, which can be visible in the temperature
dependence of �m /�T. Corresponding to �m /�T=0 for
h�hm, �m /�T has maxima that are marked by solid squares
to separate the high-temperature regime for h�hm, as shown
in the inset of Fig. 5�c�. As the field approaches hm, the
maximum tends to disappear.

In the gapless regime, the gap in the plateau state can be
closed by increasing the field. Thus, the magnetic behavior
m�T� is analogous to that in the LL phase, where there are
also minimum and maximum observed at rather low tem-
peratures �Fig. 5�d��. Such a crossover in the gapless phase
between a m�0 plateau and the saturated state has not been
reported. The magnetic behaviors of the spin-1

2 F-F-AF anti-
ferromagnetic chain15 have been studied numerically but no
such a crossover is observed between the m=1 /6 plateau and
the saturated state when the temperature is down to 0.025JF.
It is also noticed that the crossover temperatures in the gap-
less regime are lower than those in the LL phase, which
would be interpreted in terms of the spinless fermion in
Sec. IV.

C. Susceptibility

The behaviors of the susceptibility � in the various re-
gimes will be discussed in this subsection. When h /JAF1

is
less than about 0.3 in the gapped spin liquid, � has a single
peak at T�� �� is the gap in the absence of magnetic field�,
and approaches zero exponentially as T→0. With further
increasing h, a new peak emerges and moves to lower tem-
peratures with the height enhanced while the high-
temperature peak becomes smoother, as shown in Fig. 6�a�.
In the high-temperature region T��, the susceptibility un-
der different fields coincide because the gap is suppressed by
thermal fluctuations. In the fermion mapping in Sec. IV, the
system has two positive-energy excitations �fermion excita-
tions� and two minus energy excitations �hole excitations�
when h=0. With the decrease in the excitation energies in-
duced by increasing the field, the susceptibility contributed
from the fermion excitations moves to lower temperatures
with the amplitude enhanced while that from the hole exci-
tations shifts to higher temperatures with the height de-

creased, both of which are responsible for the behaviors ob-
served in Fig. 6�a�. In the LL, � is finite as T→0, as shown
in Fig. 6�b�. With cooling temperature, � increases slowly to
the temperature T�� and then has a sharp rise until to a
peak at rather low temperatures, which results from the clo-
sure of the gap.

In the plateau state, due to the open of a gap, the suscep-
tibility has a single peak, and approaches zero exponentially
as T→0. With increasing the field, the peak moves to higher
temperatures with the height declined when h�hm while it
shifts to lower temperatures with the height enhanced after h
exceeds hm, as shown in the inset of Fig. 6�a�. The field
dependence of the peak temperature is displayed by the
dashed line in Fig. 4�b�, where the field with the highest peak
temperature is hs, as marked by a triangle. These distinct
behaviors of the susceptibility also result from the crossing
of the fermion and hole spectra. When h�hm, � is domi-
nated by a hole branch whose gap is enhanced with increas-
ing the field, yielding the peak to move to higher tempera-
tures with the height decreased. After h exceeds hm, the two
spectra cross and the susceptibility is dominated by the fer-
mion branch whose gap declines with the increasing field,
yielding the peak to move to lower temperatures with the
height enhanced. Different from the gapped spin liquid, the
susceptibility does not show double peaks in the plateau
phase. In the gapless regime, owing to the closure of the gap,
the susceptibility exhibits the same features as those in the
LL, as shown in the inset of Fig. 6�b�.

D. Specific heat

In this subsection, the specific heat is explored in detail.
When h�hc1

, the specific heat C has a single peak and ap-
proaches zero exponentially as T→0. The peak shifts to
higher temperatures with the height decreased when �eff di-
minishes �Fig. 7�a��. This shift is attributed to the hole exci-
tations whose gaps increase with increasing the field. It is
noticed that the peak temperature, Tpeak /JAF1

��, in this sys-
tem is distinct from the result Tpeak /J�2�� of the S=1
Haldane chain �J and �� are the coupling and gap of the

FIG. 6. �Color online� Temperature dependence of the suscepti-
bility for �a� h /JAF1

=0.1, 0.2, 0.3, 0.34, 0.36, 0.38, 0.4, and 0.42
from bottom to top; �b� h /JAF1

=0.5 and 0.55; the inset of �a�
hc3

�h�hc2
and �b� hs�h�hc3

.

FIG. 7. �Color online� Specific heat of the system with �a�
hc1

�h, �b� hc2�h�hc1, �c� hc3�h�hc2, and �d� hs�h�hc3.
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S=1 Haldane chain, respectively�.40 As the field h ap-
proaches hc1

, a shoulder gradually emerges at low tempera-
ture, which is a signature of approaching the quantum critical
point30,41 and is from the hole excitations.

In the LL, the linear temperature dependence of the spe-
cific heat at low temperature is observed. With a further in-
crease in the field, the system shifts away from the quantum
critical point hc1

. Thus, the shoulder at low temperature is
smoothed down gradually, as shown in Fig. 7�b�. The disap-
pearance of the shoulder is attributed to the hole excitations.

In the plateau state, the specific heat decays exponentially
when T→0 because of the open of a gap. Near the lower
critical field hc2

, the shoulder that emerges in the LL vanishes
gradually while near the upper critical field hc3

, a double-
peak structure emerges. As expected, the crossing of the fer-
mion and hole spectra affects the behavior of the specific
heat. With increasing the field, the peak of the specific heat
moves to lower temperatures when h�hm, and when h ex-
ceeds hm, the peak starts to move to higher temperatures, as
shown in Fig. 7�c�. However, different from the magnetiza-
tion and susceptibility, the behavior of the specific heat can-
not be characterized simply only by the hole �h�hm� or
fermion �h�hm� excitations, although the crossing indeed
changes the features of the behavior. This is because the
magnetization and susceptibility are determined only by the

occupied number of the excitations but the specific heat is
affected by both the numbers and energies of the quasiparti-
cles.

In the gapless regime, with increasing the field, the high-
temperature peak of the specific heat keeps nearly intact
while the low-temperature peak that occurs near the critical
field hc3

in the plateau state moves to lower temperatures
with the height declined �Fig. 7�d��. These behaviors will be
analyzed in the next section.

IV. JORDAN-WIGNER TRANSFORMATION AND
SPINLESS FERMION MAPPING

In order to explain the thermodynamic behaviors ob-
served in the above sections, the elementary excitations of
the system are studied using the JW transformation.42 The
S=1 /2 spin operators can be transformed into the spinless
fermion operators through JW transformation

Si
+ = ci

†ei��j�icj
†cj, Si

z = �ci
†ci −

1

2
	 , �2�

where ci
† and ci are the creation and annihilation operators of

the spinless fermion, respectively. For this S=1 /2 tetrameric
HAFC, four kinds of spinless fermions should be introduced:

S4j−3
+ = aj

† exp
i� �
m�j

�am
† am + bm

† bm + cm
† cm + dm

† dm�� ,

S4j−2
+ = bj

† exp�i�
�
m�j

�am
† am + bm

† bm + cm
† cm + dm

† dm� + aj
†aj�
 ,

S4j−1
+ = cj

† exp�i�
�
m�j

�am
† am + bm

† bm + cm
† cm + dm

† dm� + aj
†aj + bj

†bj�
 ,

S4j
+ = dj

† exp�i�
�
m�j

�am
† am + bm

† bm + cm
† cm + dm

† dm� + aj
†aj + bj

†bj + cj
†cj�
 ,

S4j−3
z = aj

†aj −
1

2
, S4j−2

z = bj
†bj −

1

2
,

S4j−1
z = cj

†cj −
1

2
, S4j

z = dj
†dj −

1

2
. �3�

After making the JW transformation, the XY interactions of original Hamiltonian are transformed to the nearest-neighbor
hoppings of the fermions and the Ising terms become the nearest-neighbor density-density interactions that will be treated by
the Hartree-Fock �HF� approximation. By performing a cumbersome derivation, we obtain a mean-field Hamiltonian after
omitting the constant
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HHF = �
j=1

N �1

2

JAF1

�db −
1

2
	 − JF�dd −

1

2
	�aj

†aj +
1

2

JAF1

�da −
1

2
	 + JAF2

�dc −
1

2
	�bj

†bj

+
1

2

JAF2

�db −
1

2
	 + JAF1

�dd −
1

2
	�cj

†cj +
1

2

JAF1

�dc −
1

2
	 − JF�da −

1

2
	�dj

†dj + JAF1
�1

2
− pAB	aj

†bj

+ JAF2
�1

2
− pBC	bj

†cj + JAF1
�1

2
− pCD	cj

†dj − JF�1

2
− pDA	dj

†aj+1 + h.c.
 − h�
j=1

N

�aj
†aj + bj

†bj + cj
†cj + dj

†dj� , �4�

where the occupied fermion numbers are da= �aj
†aj�,

db= �bj
†bj�, dc= �cj

†cj�, and dd= �dj
†dj�, and the covalent bond-

ings are pAB= �bj
†aj�, pBC= �cj

†bj�, pCD= �dj
†cj�, and

pDA= �aj+1
† dj�. The brackets �¯ � denote either the HF

ground-state average �T=0� or the thermal average �T�0�.
By making the Fourier transform and then Bogoliubov trans-
formations, a quadratic Hamiltonian can be obtained

HHF = �
k

�	k


k

†
k + 	k
��k

†�k + 	k
��k

†�k + 	k


k

†
k� , �5�

where 
, �, �, and 
 denote four excitation spectra with the
dispersion relations 	k

i �i=
 ,� ,� ,
�.

A. Spin gap and magnetization

In the mean-field calculations of the ground-state proper-
ties, the occupation numbers and covalent bondings are self-
consistently calculated by minimizing the ground-state en-
ergy with the constraint �Stot

z �= ��i=1
4N Si

z�=0, i.e., the total
number of spinless fermions is 2N. The self-consistent cal-
culations give rise to four excitation spectra �Fig. 8�a��. In
the absence of magnetic field, 	k


=−	k

 and 	k

�=−	k
�. Thus,

the ground state is obtained by filling up the two negative
spectra 
 and �. The gap from Stot

z =0 to Stot
z = �1, corre-

sponds to the energy of adding or removing a fermion

�HF = 	k=�
�

=
�2

4
�A − �A2 − 4�JAF1

4 �1 + 2pAB�2

��1 + 2pCD
2 � − 2JAF1

2 JAF2
JF�1 + 2pAB�

��1 + 2pBC��1 + 2pCD��1 + 2pDA�

+ JAF2

2 JF
2�1 + 2pBC�2�1 + 2pDA�2��1/2�1/2, �6�

where the parameter A is

A = JAF1

2 ��1 + 2pAB�2 + �1 + 2pCD�2�

+ JAF2

2 �1 + 2pBC�2 + JF
2�1 + 2pDA�2. �7�

For JAF1
=JAF2

=JF=1, the mean-field result gives the gap
�HF=0.4377JAF1

, which agrees with the DMRG result
�=0.435JAF1

.23

In Fig. 8�b�, the gap is plotted as a function of JAF1
. The

HF results agree with the DMRG values when
JAF1

/JF�0.7. In Figs. 8�c� and 8�d�, JF and JAF2
depen-

dences of the gap are plotted, respectively. It can be seen that
when JF and JAF2

are smaller than JAF1
, the HF results are

consistent with the DMRG results but with increasing JF or
JAF2

, the HF results become worse when JF or JAF2
is promi-

nent.
In a magnetic field, new quasiparticles can be excited in

the � and 
 branches. It is found that the excited fermions
can interpret the magnetization process at zero temperature.
When the field is less than the gap, no fermion is excited and
m=0. When the field closes the gap at hc1

, new fermions are
excited in the � branch, and m increases until the � branch is
fully filled at hc2

. The gap between the spectra � and 
 is the
width of the plateau, say, hc3

−hc2
. When the field exceeds

hc3
, the fermions in the spectrum 
 are excited and the sys-

tem is fully spin polarized.

B. Zero-field thermodynamics

At finite temperature, the numbers of the excitations obey

the Fermi-distribution function nk
i =1 / �e	k

i /T+1�
�i=
 ,� ,� ,
�, from which the thermodynamics can be ob-
tained by the self-consistent calculations for the occupation
numbers and covalent bondings.

In Fig. 9, the specific heat obtained from the HF calcula-
tions are displayed, which qualitatively agree with the

FIG. 8. �Color online� �a� The elementary excitation spectra of
the system. The gap as a function of �b� JAF1

, �c� JF, and �d� JAF2
.

The DMRG results are from Ref. 23.
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TMRG results. With increasing JF or JAF2
, the gap is de-

creased. Therefore, the peaks of the specific heat contributed
from � and � spectra move to lower temperatures with the
height decreased while those from 
 and 
 spectra shift to
higher temperatures with the height declined, both of which
compose the observed shoulder and double peaks in the spe-
cific heat. As the spectra � and � shift slowly with JF but
rapidly with JAF2

, the specific heat exhibits a shoulder with
increasing JF but double peaks with increasing JAF2

at low
temperature. The three peaks in the specific heat that cannot
be reproduced in the mean-field theory may result from the
interactions of the quasiparticles, which might induce exci-
tations between 
�
� and ����. It is expected that the ener-
gies of the induced excitations are enhanced with increasing
JF, yielding the observed shift of the novel peak from the low
to high temperatures in Fig. 2�b�.

C. Thermodynamics in magnetic fields

At zero temperature, the spectra 
 and � are fully occu-
pied while � and 
 spectra are empty in the absence of mag-
netic field. Thus, the excitations at finite temperature are of
the hole �
 and �� and fermion �� and 
� types, respectively.
In a magnetic field, the energies of the spectra decrease,
yielding the excitations with minus energies to become hole
excitations at finite temperature. In this subsection, some
typical thermodynamic behaviors could be explained by the
combination of the hole and fermion excitations.

When hc1
�h�hc2

and hc3
�h�hs, the minimum and

maximum of m�T� at low temperature are observed in the

mean-field results, and the crossover temperatures in the gap-
less regime are lower than those in the LL, as shown in Fig.
10�a�. As the magnetization is proportional to the total num-
ber of the fermions, the minimum and maximum indicate
that the hole and fermion excitations dominate at low tem-
perature, respectively. In the vicinity of the lower critical
field hc1

�hc3
�, the fermion spectrum ��
� crosses the Fermi

level slightly, as shown in the lower inset of Fig. 10�a�, mak-
ing the excitations with minus energies become hole type.
Thus, the low-temperature behavior of m�T� is determined by
the competitions of the fermion and hole excitations near the
Fermi level. Due to the dispersion relation, the density of
states D�	� of the holes is larger than that of the fermions
near the Fermi level, yielding more holes excited and thus
the decrease in m at low temperature. After the few holes are
occupied, the fermion excitations dominate and, thus, a mini-
mum of m emerges. The analogous arguments for the maxi-
mum near the upper critical field hc2

�hs� also apply. The
lower crossover temperature in the gapless regime is attrib-
uted to the larger values of the gradient of the Fermi velocity
with respect to the field �vF /�h of the spectrum 
 near the
Fermi level, which diminishes the difference in the density of
states in the vicinity of the Fermi level.

Different from the magnetization, the fermion and hole
excitations have equivalent contributions to the susceptibil-
ity. However, with increasing the field, the fermion excita-
tions move close to the Fermi surface while the holes move
away. Thus, the peak of the susceptibility from the excited
fermions shifts to lower temperatures with the height en-
hanced while that from the excited holes exhibits opposite
behaviors, as shown in Fig. 10�b�. All the observed behaviors
of the susceptibility in the gapped spin liquid and plateau
phases can be understood on the basis of the above analyses,
as mentioned in Sec. III.

Now let us discuss briefly the specific heat. The specific
heat can be divided into those from the fermion and hole
excitations, which are denoted as Cf and Ch, respectively. It
is found that Cf and Ch behave rather differently with the
field and Ch contributes essentially to the observed charac-
teristic features, which are not shown here for brevity. For
example, when h�hc1

, the gaps of the hole excitations 
 and
� are enhanced with increasing the field, making the peaks of
Ch move to higher temperatures with the amplitude de-
creased. As h approaches hc1

, a low-temperature peak in Ch

emerges, yielding the shoulder in the specific heat. In other
phases, similar analyses are also applicable.

As discussed above, the spinless fermion mapping can be
used to explain both the ground-state and thermodynamic
properties in a wide range of the parameters. The fermion
and hole excitations provide a simple way to understand the
complex thermodynamic behaviors of the system.

V. SUMMARY AND DISCUSSION

The thermodynamic properties of the spin S=1 /2 tet-
rameric HAFC with alternating couplings AF1-AF2-AF1-F
have been studied by means of the TMRG method and JW
transformation. In the absence of magnetic field, the thermo-
dynamic behaviors are determined by the gapped low-lying

FIG. 9. �Color online� Temperature dependence of the specific
heat for �a� JF /JAF1

=0.5, 1.5, 2.5, and 3.0; and �b� JAF2
/JAF1

=0.5,
1.0, 1.5 and 2.0 from top to bottom. The comparisons with the
TMRG results are shown in the insets.

FIG. 10. �Color online� Mean-field results in different magnetic
fields for �a� magnetization m�T� at low temperatures in the gapless
regime and �b� susceptibility contributed from the fermion and hole
excitations. The lower inset of �a� depicts the dispersion in the
vicinity of the lower critical field.
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excitations. The specific heat can have single peak, double
peaks, and three peaks for different couplings. The shoulder
and double peaks in the specific heat are attributed to the
decreased energies of the gapped excitations. The novel in-
termediate peak in the specific heat results from the increase
in JF after the double peaks have been induced by large JAF2

.
With further increase in JF, the novel peak shifts to higher
temperatures and finally merges into the high-temperature
peak. The susceptibility is found to have a peak that shifts to
lower temperatures with the amplitude enhanced with in-
creasing JF or JAF2

.
A phase diagram in the temperature-field plane for

JAF1
=JAF2

=JF is obtained by analyzing the crossover behav-
iors of the various phases at finite temperature. The system is
unveiled to contain the gapped spin liquid, LL, magnetiza-
tion plateau, gapless, spin polarized, and classical phases.

In the LL and gapless regimes, the magnetization curve
exhibits a minimum or maximum at low temperature, repre-
senting a nonsingular crossover. The linear field dependence
of the crossover temperature in the LL with the same ratio as
that in the S=1 Haldane chain indicates that the crossovers in
the two systems belong to the same class, which implies that
the Haldane-type phase of this tetrameric HAFC has an
analogous low-lying dispersion relation to that in the S=1
Haldane chain. In the plateau state, as a crossing of a fermion
and a hole spectra at hm, the temperature dependence of the
magnetization behaves differently below and above the field.

When h�hc1
, the susceptibility has double peaks with

increasing the field. In the plateau state, the susceptibility has
a single peak, and owing to the crossing of the spectra, the
peak moves to higher temperatures when h�hm, and to
lower temperatures when h�hm with increasing the field. In
the LL and gapless regimes, � is finite as T→0. The suscep-
tibility in any fields coincides when T�� due to the thermal
fluctuations.

In the gapped spin liquid, the specific heat has a shoulder
as the field approaches the critical field hc1

. In the LL, the
specific heat as a function of temperature behaves linearly at
low temperature and the shoulder is smoother down gradu-
ally by increasing the field. In the plateau, owing to the
crossing of spectra, the peak of the specific heat moves to
lower temperatures when h�hm, and to higher temperatures
when h�hm with increasing the field. As the field ap-
proaches hc3

, a small peak emerges at low temperatures. In
the gapless phase, with increased field h−hc3

, the low-
temperature peak moves to lower temperature with the am-
plitude decreased.

By means of the JW transformation and mean-field ap-
proximation, the low-lying excitations and thermodynamic
properties of the system are studied to understand the TMRG
results. It is unveiled that the system has four excitation
spectra with a gap, which may account for the magnetization
process at zero temperature. At finite temperature, it is found
that the thermodynamic behaviors are determined by the
combination of the fermion and hole excitations. The com-
plex thermodynamic behaviors in the TMRG results can be
understood well within the free fermion mapping. Finally, we
would like to add that the observations presented in this pa-
per for this spin-1

2 tetrameric HAFC could be expected to test
experimentally in future.
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